

Text Detection using Delaunay Triangulation in Video Sequence
Liang Wu1, Palaiahnakote Shivakumara2, Tong Lu1* and Chew Lim Tan3

1 National Key Lab for Novel Software Technology, Nanjing University, Nanjing, China
2 Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia

3 School of Computing, National University of Singapore
wuliang0301@hotmail.com, hudempsk@yahoo.com, lutong@nju.edu.cn and tancl@comp.nus.edu.sg

Abstract—Text detection and tracking in video sequence is

gaining interest due to the challenges posed by low resolution and
complex background. This paper proposes a new method for text
detection by estimating trajectories between the corners of texts
in video sequence over time. Each trajectory is considered as one
node to form a graph for all trajectories and Delaunay
triangulation is used to obtain edges to connect nodes of the
graph. In order to identify the edges that represent text regions,
we propose four pruning criteria based on spatial proximity,
motion coherence, local appearance and canny rate. This results
in several sub-graphs. Then we use depth first search to collect
corner points, which essentially represent text candidates. False
positives are eliminated using heuristics and missing trajectories
will be obtained by tracking the corners in temporal frames. We
test the method on different videos and evaluate the method in
terms of recall, precision, f-measure with existing results.
Experimental result shows that the proposed method is superior
to existing method.

 Keywords—Corner point detection, Trajectories drawing,
Sub-graph formation, Motion coherence, text detection

I. INTRODUCTION
Embedded text in video sequence provides valuable

information for video indexing and retrieval because text of
logos, sub-titles, caption and scene texts in video sequence help
in addressing the problems related to semantics gap in
retrieving events [1-3]. To achieve this, text detection in video
sequence with good accuracy is essential. Therefore, the topic
of text detection and recognition in video has attracted
increasing attention from researchers recently [4]. Text in video
can be seen as two types: graphics text, which is edited text like
sub-titles in news channels and scene text, which is part of
video and generally appears on logos, banners, billboards,
trucks’ bodies etc. Since graphics is edited, it is easy to process
whereas scene text is part of video, which poses lots of
challenges such as orientation, font, font size, contrast, color
variation etc. In addition, text movements in complex
background make text detection problem more complex [1-4].

 The literature on text detection in video can be seen as two
categories at high level, namely methods [5, 6] for static text
detection (graphics/caption) and non-static text detection
(scene text) [7]. The first category can be classified further as
methods without temporal information (individual frames) and
with temporal information [8]. Again, methods without
temporal information can be classified as connected component
based [9], texture based and gradient based methods.
Connected components based methods are good for big font
text and caption text that share uniform color. Texture based

methods [10-12] are good for detecting text from complex
background images. Edge and gradient based methods [13, 14]
are fast compared to texture based methods but they are
sensitive to background. The main drawback of these methods
is that the scope is limited to horizontal and graphics text
detection but not scene text detection. There are methods [15-
18] which detect both graphics and scene text of any
orientation. However, these methods do not utilize the temporal
information available in video rather they use individual frames
for text detection. Similarly, the methods use temporal
information for static text detection, based on the fact that the
text appears in video at the same location for a few seconds [5,
6, 19-21]. Therefore, these methods can be used for caption or
graphics text detection but not scene text detection as the latter
is not static. To detect scene text, the methods [7, 8] use motion
vector analysis in temporal frames with spatial information or
direction. However, these methods do not perform well for
graphics text because graphics text is not dynamic. Thus, there
is a demand for developing a method detecting both graphics
and scene text by exploring temporal information.

 Hence, in this paper, we propose a hybrid method that
explores both characteristics of graphics and scene text by
estimating trajectories between corners of text, namely spatial
proximity, motion coherence, local appearance and canny rate.
We are inspired by the work presented in [22] for tracking
person in crowd, where it shows that these features are
effective in tracing a person moving in complex environment.
To the best of our knowledge, these features are explored the
first time for text detection in video. Then we propose to use
Delaunay triangulation [22] to obtain graph for the trajectories
over a time. The depth first search is proposed to cluster
trajectories which represent text. The advantage of this method
is that it works for both static (graphics) and dynamic text
(scene) of any orientation and script in video.

II. PROPOSED METHOD
The proposed method is divided into three sub-sections. The

first section introduces features which represent text pixels
based on trajectory estimation between the corners. Cluster
density and Delaunay triangles are used for identifying text
candidate regions in the second section. The third section
merges all candidate text regions to extract a text line. For each
frame, we extract corner points in the current frame to identify
location of text region. As it is noted that text generally has
dense corners with close proximity, we propose to use corners
for estimating trajectories in this work. Besides, it is found
from [6] that corners for text detection are effective in videos.
Then, we use KLT tracker to generate a set of trajectories of

2014 11th IAPR International Workshop on Document Analysis Systems

978-1-4799-3243-6/14 $31.00 © 2014 IEEE

DOI 10.1109/DAS.2014.28

41

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on December 27,2021 at 01:16:08 UTC from IEEE Xplore. Restrictions apply.

corner points within a specified time window of the video
sequence as in [22] where KLT is used to trace a person in the
crowd. The length of time window is named �, which means
the number of frames in the video sequence. We track those
corner points of the current frame respectively in the previous �/2 frames and the later �/2 frames. So we get the trajectories
of every corner point in the current frame. Then the graph is
constructed using a set of trajectories. Each node of the graph
corresponds to a separate trajectory. Delaunay triangulation is
proposed to consider trajectories as edges to form a graph. In
this way, we get connected graph for all corners in a frame
based on trajectories as shown in the first illustration in Fig. 1,
where one can see that a graph is formed with not only corners
of text but also others. This graph may contain edges which
belong to non-text component and edges may connect across
lines. Therefore, to eliminate such false edges, we propose four
criteria to prune those edges step by step. An edge connecting
two nodes, say, � and �, will be retained only if it meets all the
following four criteria: (1) spatial proximity, (2) motion
coherency, (3) temporal variation of local appearance and (4)
canny rate. As a result, we get several small sub-graphs as
shown in the second illustration in Fig. 1, where two characters
have two sub-graphs correctly. We then use depth first search
to combine clusters of corner points which represent text
characters. However, these regions may include some non-text
region also due to complex background. Therefore, we propose
two rules to verify these regions to wipe out the non-text
regions. At last, we merge those clusters belonging to the same
text line as shown in the third illustration in Fig. 1, where text
box is fixed for two characters. The same thing is illustrated on
real frames in Fig. 2, where the first image from top left is the
input, the second image from top right shows the initial graph
given by the Delaunay triangulation based on trajectories of
corners of text, the third image from bottom left shows the
results of pruning, where all non text edges and connecting
across lines are removed, and the fourth image from bottom
right shows the final text detection result where it can be seen
that all text lines are detected properly.

A. Pruning edges via four criterions
In this stage, we define four criteria to prune the edges.

Firstly, calculate the spatial proximity of two connected
trajectories. We believe that if two trajectories belong to the
same text line region, they will remain in close proximity. So
the length of the edge connecting them will be small in every
frame of the time window. We use the maximum displacement
between a pair of corner trajectories within a time window to
represent spatial proximity. It is defined as

���,� = ��� 	
���,� (
)�
 ∈ [
�,
� + � − 1] (1)

where ���,� is the value of spatial proximity between node �
and �,
���,� (
) is the length of edge between nodes � and �
at frame
, and
� is the starting frame within the time window.
If spatial proximity of the two connected trajectories is too
large, then the edge connecting them will be pruned. This
eliminates some of the false edges.

Secondly, calculate the motion coherency of two connected
trajectories. Since if two nodes of trajectories belong to the
same text line region, the motion of them will be alike, that is

to say the speed and direction of their motion will be
approximate. In another word, the distance between these two
nodes will always be the same within the time window. So we
use the standard deviation of the distance between two
trajectories over the time window to measure the dissimilarity
with respect to motion coherency:

���,� = �1
� ∑ �
���,� (
) −
���,����������2
�+�−1

� (2)

where ���,� is the value of motion coherency between node
� and �,
���,��������� is the mean value of length of edge between
nodes � and � within the time window. If motion coherency
between two connected trajectories node is too large, then this
edge connecting them will be pruned. With this criterion, we
are able to distinguish those two text lines, which overlaps
with each other, but whose motion status is not the same as
shown in Fig. 3 where gradually two text lines are separated as
time goes.

T TTime Window τ

Current Frame

T TTime Window τ

Current Frame

T TTime Window τ

Current Frame

Fig. 1 The initial graph with trajectories, edges pruned graph and the text line

detected.

Fig. 2 The process of text detection in a frame of image.

Fig. 3 Two text lines having overlap region but with their motion status not

the same are distinguished.

42

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on December 27,2021 at 01:16:08 UTC from IEEE Xplore. Restrictions apply.

Thirdly, calculate temporal variation of local appearance. As
we know, if text line region in a video remains in the same
shape and size, it is just like a rigid thing and its appearance
remains the same during a period of time. So we utilize the
temporal variation of local appearance to describe this
property. In our method, the temporal variation of local
appearance is measured to quantify the change in appearance
of a sequence of small triangular patches bounded by three
adjacent trajectories. Here we use the temporal variation of a
hue-saturation color histogram of the Bhattacharyya distance
between the color histogram ℎ(
) , and the average color
histogram ℎ� of the patch within the time window is used to
define the dissimilarity ��� ,� for a sequence of patches as

���,� = �1
� ∑ �ℎ��
2 (ℎ(
), ℎ�)
�+�−1

� (3),

where ���,� is the value of temporal variation of local
appearance and �ℎ��
 (. , .) is the Bhattacharyya distance
between two histograms. Since each edge can potentially be
shared by up to two adjacent patches, we chose the largest
dissimilarity to represent the value of temporal variation of
local appearance. If this value is larger than a threshold, we
will prune this edge. The effect of this criterion can be seen in
Fig. 4, where we can see the three triangles marked by red
color appear the same.

T TT T
T T

Time Window τ

Current Frame

Fig. 4 Temporal variation of local appearance is measured to quantify the

change in appearance of a sequence of small triangular patches bounded by
three adjacent trajectories.

Fourthly, calculate canny rate for each edge between two
connected nodes. Essentially, the previous three criteria used
to prune edge between trajectory nodes are about the
consistency of spatial proximity, motion status and local
appearance within the time window. Sometimes, due to
complex background, non-text region may satisfy the above
three criteria. Therefore, we design one more criterion which
is used to further prune some more edges in the graph and
only retain those represent text regions. We calculate a canny
map for the current frame. As we referred previously, there
exist dense and orderly presence of corner points in characters,
especially at the turning of their strokes. And these corner
points always occur around a canny line. We want to retain
those edges in the graph whose two endpoints are the corner
points at the turning of a character’s strokes and near a canny
line, enabling us to store the structure of a character in the
pruned graph. We then perform dilation operation on the
canny map to make the canny line a little thicker to assure that
the corner points near the original canny line are now in the
dilated canny line. After the dilation, we calculate the canny
rate over the time window for each edge in the graph as shown
in Fig. 5, where the first image in the two examples shows
canny of text line, the second one gives the results of dilation,

the third illustrates the results of pruning graph and the fourth
one gives the results of text detection.

We define the canny rate as

���,� = ∑ |�� ,� (
)∩�� ,� (
)|
�+�−1
=
�
∑ |�� ,� (
)|
�+�−1

=
�
 (4)

where ���,� is the canny rate of edge between node � and �.
��,� (
) and ��,� (
) respectively represent the set of pixels
belonging to edge between nodes � and �, and the set of pixels
belonging to the canny map within the time window. The
notation |�| means the cardinality of the set � . After
calculating the canny rate, we further prune some of those
edges whose canny rate value is too large.

Fig. 5 Two samples of using canny rate criterion. Four images are

respectively canny map, dilated canny map, the graph which stores the
structure of characters and the final text line detected.

B. Candidate text region verification
 After the four steps of pruning edges in the graph, the

initial connected graph becomes several groups of sub-graphs.
We use deep first search to cluster these corner points. Those
clusters which consist of only one corner point will be deleted
directly, because a single point of pixel cannot possibly form a
character. Then the remainder clusters are all small connected
sub-graphs which have more than one corner points with
edges not pruned connecting them. These clusters are called
candidate text region. We accordingly calculate the minimum
bounding box for each cluster according to its constituent
corner points.

We define two rules to wipe out some clusters in which the
edges connecting their corners are not that dense and arranged
orderly as follows:

Rule 1: Cluster edge density is defined to represent text
density in the bounding box of the cluster. Cluster edge
density means the density of the remainder edge pixels in the
bounding box. It is defined as

�� = ���
�! ×�ℎ

 (5)

where �� is cluster edge density, �! and �ℎ are the width
and height of the bounding box, ��� is the number of the
remainder edge pixels. After calculating the ��, we compare it
with a threshold ��� . If it is smaller than ��� , we will
abandon this cluster as text region.

Rule 2: As we use Delaunay triangulation to construct the initial
graph of the corner points, the sub-graph of the true text line

43

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on December 27,2021 at 01:16:08 UTC from IEEE Xplore. Restrictions apply.

region will be a similar Delaunay triangulated graph of its
containing corner points. We use the term cluster edge strength to
represent this property, and it is defined as

�� = �"�
��� (6)

where �� is cluster edge strength, �"� is the number of the
cluster’s containing edges, and ��� is the number of edges
which is formed through Delaunay triangulation according is
containing corner points. If �� is smaller than the
threshold ���, we also abandon this cluster, and consider it is
not likely to be a text region.

C. Merging clusters to form text line
The objective of this section is to merge all clusters to extract

text line. If the gap between two characters in a text line is
small, the method will regard every character as a separate
cluster of text region, because the canny rate of the edges
crossing these two characters will not be high. This outputs
full text line.

The process increasingly adds a cluster into the merged
cluster until the set of clusters is empty. We firstly choose a
cluster whose width and height is very close to be an original
merged cluster. Then we select the nearest cluster to be
merged with. After this step, there are at least two characters
in the merged cluster. Next, we use the information of the
angle and center of the merged cluster’s bounding box to add
the remaining clusters. If there is no such an original cluster
with close width and height, we directly use the angle and
center information of one of the clusters to merge other
clusters. Fig. 6 shows the process of merging clusters to obtain
text line based on angle information of text clusters.

Fig. 6 The process of merging clusters

III. EXPERIMENTAL RESULTS
We collect video data from different sources for both

horizontal and non-horizontal text detection, which includes
500 video of 1 to 3 seconds. This dataset consists of video of
low resolution, different fonts, font sizes, scripts, orientation,
background etc. The proposed method is evaluated in terms of
Recall (R), Precision (P), F-measure (F) and Average
Processing Time (APT). Average processing time is defined as
the sum of processing time of all the frames divided by the
number of frames. The definitions and the way we count the
number of text blocks to compute recall, precision, f-measure
can be found in [18]. To show the proposed method is
effective, we compare it with the existing methods in [19, 20].
The reasons for choosing these existing algorithms are the
following. The methods use temporal information for text
detection as in our method and the method [19] uses motion
features for multiple frame verification. However, the
algorithm in [19] focuses on graphics and horizontal text but

not non-horizontal and scene texts, and the method in [20]
explores edge density and similarity measures to detect text
while the proposed method presents triangle formation based
on trajectories of the corners of text. In addition, the proposed
method detects non-horizontal text detection and scene text.

A. Experiments for Text Detection
The qualitative results of the proposed and the existing

methods are shown in Fig. 8, where (a) shows an input frame
having different background, graphics text, scene text with
different scripts and non-horizontal text, (b) shows that the
proposed method detects almost all texts in the input frames
including non-horizontal text in the third frame in (a), while
the existing methods do not detect text properly because of the
lack of discriminative features for detecting both graphics and
scene texts. It is observed from Fig. 8 that the existing
methods do not detect scene text in the second frame while the
proposed method detects well. The quantitative results of the
proposed and the existing method are reported in Table I,
where the proposed method gives high recall, precision, F-
measure and low average processing time in seconds
compared to existing methods. Bouaziz et al.[20] is better than
Huang et al.[19] in terms of recall and f-measure because
Bouaziz et al. propose quad tree technique to identify the
correct text candidates based on edge density of text, while
Huang et al. [19] propose some heuristics based on connected
component analysis for identifying text candidates. However,
since quad tree used in [20] requires more computations, it is
expensive compared to the method in [19]. On the other hand,
the proposed method is better than both the existing methods
because of advantage of four pruning criteria proposed based
on temporal information and it does not involve all 30 frames.
Thus the proposed method is less expensive compared to the
existing methods.

Fig. 7 The value strength and density influence recall and precision.

We chose 100 frames from our dataset and use them to set
the value of edge strength threshold which is required for rule
1 and edge density threshold which is required for rule 2
presented in Section II.B to verify text candidates, respectively.
Firstly, we set density threshold to be 0.2 and range strength
threshold from 0.1 to 0.6 as shown on the left side in Fig. 7,
where recall and precision curve influence to fix an optimal
threshold. In the same way, we set strength threshold to be 0.4
and range strength threshold from 0.05 to 0.03 as shown on
the right side in Fig. 7, where the experiment influences to fix
an optimal threshold for edge strength. Finally, we
respectively set density threshold 0.22 and strength threshold
0.45 as shown in Fig. 7(left) and Fig. 7(right).

44

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on December 27,2021 at 01:16:08 UTC from IEEE Xplore. Restrictions apply.

TABLE I. PERFORMANCE OF THE PROPOSED AND EXISTING METHODS
FOR TEXT DETECTION (IN %)

Method R P F APT(seconds)

Proposed Method 85 83 84 0.98

Bouaziz et al. [20] 45 56 49 4.0

Huang et al. [19] 30 75 43 1.6

IV. CONCLUSION AND FUTURE WORK
In this paper, we propose a new method for detecting both

graphics and scene texts in video sequence. This method
explores temporal information by estimating trajectories for
the corners of texts. Delaunay triangulation is used to obtain
graphs from the trajectories between corners. The proposed
pruning criteria eliminate false edges in the Delaunay triangles,
which connect corners across text lines and non-text region.
The four pruning criteria are derived based on spatial
proximity, motion coherence, local appearance and canny rate,
respectively. To verify the text region, the method proposes
heuristics using the edge strength and area of text region. The
identified regions are merged to extract text lines using angle
information of text clusters. To the best of our knowledge, the
method is the first to detect both graphics and scene texts in
video sequences using temporal information. In the future, we
are planning to explore a few more features using motion
vector analysis to improve the accuracy of large video dataset.

ACKNOWLEDGMENTS
The work described in this paper was supported by the Natural
Science Foundation of China under Grant No. 61272218 and
61321491, the 973 Program of China under Grant No.
2010CB327903, and the Program for New Century Excellent
Talents under NCET-11-0232.

REFERENCES
[1] J. Zang and R. Kasturi, “Extraction of Text Objects in Video Documents:

Recent Progress”, .In Proc. (DAS, pp. 5-17, 2008.
[2] K. Jung, K. Kim and A. K. Jain, “Text information extraction in images

and video: a survey”, PR, pp, pp 977-997, 2004.
[3] D. Doermann, J. Liang and J. Li, “Progress in Camera-Based Document

Image Analysis”, In Proc. CDAR, pp 606-616, 2003.
[4] K. Jung, “Neural network-based text location in color images”, PRL, pp.

1503-1515, 2001.
[5] A. Mosleh, N. Bouguila and A. B. Hamaz, “Automatic Inpainting

Scheme for Video Text Detection and Removal”, IEEE Trans on IP, pp
4460-4472, 2013.

[6] X. Zhao, K. H. Lin, Y. Fu, Y. JU. Y. Liu and T. S. Huang. "Text From
Corners: A novel Approach to Detect Text and Caption in
Videos." IEEE Trans. on IP, pp 790-799, 2011.

[7] H. Xiaodong. "A novel approach to detecting scene text in video." In
Proc. CISP, pp 469-473, 2011.

[8] R. Wang, W. Jin and L. Wu, “A Novel Video Caption Detection
Approach using Multi-Frame Integration”, In Proc. ICPR, 2004

[9] K. Jung, K. I. Kim and A. K. Jain. “Text information extraction in
images and video,” Pattern Recognition, 2004, pp 977-997.

[10] L. Huiping, D. Doermann, and O. Kia. "Automatic text detection and
tracking in digital video." IEE Trans. on IP, pp 147-156, 2000.

[11] K. L. Kim, K. Jung and J. H. Kim, “Texture-Based Approach for
TextDetection in Images using Support Vector Machines and
Continuous Adaptive Mean Shift Algorithm”, IEEE Trans. on PAMI, pp.
1631-1639, 2003.

[12] P. Shivakumara, T. Q. Phan and C. L. Tan, “New Wavelet and Color
Features for Text Detection in Video”, In Proc. ICPR, 2010, pp 3996-
3999.

[13] C. Liu, C. Wang, and R. Dai, “Text detection in images based on
unsupervised classification of edge-based features,” In: Proc. ICDAR,
pp 610-614, 2005.

[14] E. K. Wong, and M. Chen “A new robust algorithm for video text
extraction,” Pattern Recognition, 2003, pp. 1397-1406.

[15] P. Shivakumara, T. Q. Phan and C. L. Tan, “A Laplacian Approach to
Multi-Oriented Text Detection in Video”, IEEE Trans. PAMI, pp. 412-
419, 2011.

[16] N. Sharma, P. Shivakumara, U. Pal, M. Blumenstein and C. L. Tan, “A
New Method for Arbitrarily-Oriented Text Detection in Video, In Proc.
DAS, pp. 74-78, 2012.

[17] Y. Liu, Y. Song, Y. Zhang and Q. Meng, “A Novel Multi-Oriented
Chinese Text Extraction Approach from Videos”, In Proc. ICDAR, pp
1387-1391, 2013.

[18] P. Shivakumara, H. T. Basavaraj, D. S. Guru and C. L. Tan, “Detection
of Curved Text in Video: Quad Tree based Method”, In Proc. ICDAR, ,
pp 594-598, 2013.

[19] X. Huang, H. Ma and H. Yuan, “A novel video text detection and
localization Approach”, In Proc. PCM, 2008, pp 525-534.

[20] B. Bouaziz, T. Zlitni and W. Mahdi, “AViTExt: Automatic Video Text
Extraction” CoRR abs/1301.2173, 2013.

[21] D. Chen and J. M. Odobez, “Video text recognition using sequential
Monte Carlo and error voting methods”, PRL, pp 1386-1403, 2005.

[22] D. Sugimura, K. Kitani, T. Okabe, Y. Sato, and A. Sugimoto, “Using
Individuality to Track Individuals: Clustering Individual Trajectories in
Crowds Using Local Appearance and Frequency Trait,” In Proc. ICCV,
pp. 1467-1474, 2009.

(a) Input horizontal text images with different background

(b) Proposed method

(c) Bouaziz et al.

(d) Huang et al.

Fig. 8 Proposed and existing methods for horizontal text detection.

45

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on December 27,2021 at 01:16:08 UTC from IEEE Xplore. Restrictions apply.

