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Abstract—A novel statistical framework for modeling the
intrinsic structure of crowded scenes and detecting abnormal
activities is presented in this paper. The proposed framework
essentially turns the anomaly detection process into two parts,
namely, motion pattern representation and crowded context mod-
eling. During the first stage, we averagely divide the spatio-
temporal volume into atomic blocks. Considering the fact that
mutual interference of several human body parts potentially
happen in the same block, we propose an atomic motion pattern
representation using the Gaussian Mixture Model (GMM) to
distinguish the motions inside each block in a refined way. Usual
motion patterns can thus be defined as a certain type of steady
motion activities appearing at specific scene positions. During the
second stage, we further use the Markov Random Field (MRF)
model to characterize the joint label distributions over all the
adjacent local motion patterns inside the same crowded scene,
aiming at modeling the severely occluded situations in a crowded
scene accurately. By combining the determinations from the two
stages, a weighted scheme is proposed to automatically detect
anomaly events from crowded scenes. The experimental results
on several different outdoor and indoor crowded scenes illustrate
the effectiveness of the proposed algorithm.

I. INTRODUCTION

Nowadays, automatic analysis of densely crowded envi-
ronments such as subways, universities, railway stations and
stadiums has been a recent interest in pattern recognition.
Methods for crowed modeling [1], crowed size estimation [2]
and individual behavior prediction [3] have been proposed.
Most crowed monitoring systems aim at assisting public secu-
rity, thus these efforts face a common problem of detecting de-
viations from crowded environments. The problem is referred
to as crowded anomaly motion detection, which provides much
more valuable hints than detecting normal behaviors. The
anomaly motions here are defined as the unusual events that are
different from those steady ones frequently happen at particular
positions inside a scene.

Unlike anomaly detection from non-crowded scenes, a
crowed environment generally requires monitoring an exces-
sive number of individuals and their activities through video
surveillance devices. As a result, computational approaches of
anomaly detection in densely crowded scenes may face more
difficulties both in scene modeling and anomaly behaviors de-

tecting in two aspects. First, multiple individuals in a crowded
scene in general lead to severe occlusions, which make object
tracking fairly difficult and sometimes a significant challenge
even for human observers. Second, highly irregular pedestrian
behaviors within the same crowded scene potentially make
explicit modeling of anomaly deviations difficult, and therefore
it may be hard to distinguish tiny deviations from normal
behaviors clearly.

In this paper, we present a novel spatio-temporal frame-
work for modeling the intrinsic structure of crowded scenes
and detecting abnormal activities in it by using Gaussian Mix-
ture Model (GMM) and Markov Random Field (MRF). Since
each crowded scene essentially consists of a large number
of pedestrian activities together with their interrelations, we
turn the anomaly detection process into two parts, namely,
motion pattern representation and crowded context modeling.
During the first stage, we averagely divide the spatio-temporal
volume of the scene into atomic blocks. Considering the fact
that the mutual interferences of several human body parts
potentially happen in the same block, we propose an atomic
motion pattern representation using GMM to distinguish the
motions inside each block in a refined way. Usual motion
patterns can thus be defined as a certain type of steady motion
activities appearing at specific scene positions. During the
second stage, we further use the MRF model to characterize
the joint label distributions over all the adjacent local motion
patterns inside the same crowded scene, aiming at modeling the
severely occluded situations in the crowded scene accurately.
By combining the determinations from the two stages, a
weighted scheme is finally proposed to automatically detect
anomaly events in crowded scenes.

The main contribution of our approach is to present a
statistical approach by coupling spatio-temporal crowded con-
text modeling for anomaly event detection in crowded scenes.
The context model is suitable to characterize the relations
between spatially or temporally adjacent pedestrian activities,
thus enforcing local consistency on them to assist detecting
anomaly motion patterns. The experimental results on several
real-life outdoor and indoor scenes illustrate the effectiveness
of the proposed method by outperforming the existing anomaly
detection algorithm.
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The rest of the paper is organized as follows. Section 2
reviews the related works. Section 3 gives the representation
of atomic motion patterns of crowded scene using GMM, then
Section 4 models the context for the activities in crowded scene
by MRF. Experiments and discussions are given in Section 5.
Finally, Section 6 concludes the paper.

II. RELATED WORK

A number of methods have been proposed in the past
years and the existing methods for anomaly detection can be
roughly classified into three categories: trajectory learning,
motion modeling, and unsupervised approach.

Generally, a trajectory learning approach first tracks each
object in a scene and then learns a model from object tracks to
identify unusual activities by detecting deviations [4]. Every
scene object is tracked over a dynamic sequence of inferred
tracking states as ST = {s1, s2, ...sT }, where T is a frame
sequence and st depicts things such as appearance, position,
shape, velocity and direction. In [5], an anomaly detection
system is proposed to automatically learn motion patterns by
tracking multiple objects, in which growing and prediction of
cluster centroids of foreground pixels ensure the accuracy of
tracking a moving object in the scene. Unfortunately, it is not
very promising for tracking objects in densely crowded scenes.
The method in [6] is one of the first algorithms for tracking
objects in a crowded environment, which uses articulated
ellipsoids to model human appearance and a Gaussian distri-
bution to model the background for segmentation. Recently,
Ali and Shah [3] present a force model which has three
floor fields inspired by the research in the field of evacuation
dynamics, namely Static Floor Field (SFF), Dynamic Floor
Field (DFF) and Boundary Floor Field (BFF). However, it is
still challenging to tracking individuals in a crowed scene by
simply using trajectory learning techniques.

Motion modeling is an alternative approach which has been
proposed by modeling motion patterns to avoid object tracking
[7]. This approach focuses on distinguishing unusual events
from other stationary behaviors and has been proved suitable
for anomaly detection especially in crowded scenes. In this
approach, optical flow is a popular low-level representation
to describe motion patterns from surveillance video. Andrade
et al. [8] implement spectral clustering on feature prototypes
that are obtained by performing PCA on the optical flow fields,
and train the MOHMM model for each class during anomaly
detection. Adm et al. [9] calculate the probabilities of optical
flows in local regions. Unfortunately, optical flow, together
with other similar low-level descriptors such as pixel change
histograms and background subtraction operations, are not
reliable enough for detecting abnormal events from crowded
scenes in which occlusions always exist [10].

Since no prior assumptions of what unusual events may
look like are required, unsupervised anomaly detection can
be considered as a complementary but simultaneously a more
natural approach to detect unusual events. It is especially
suitable for the situations such as the lack of sufficient training
data, and the volatility of defining normality and abnormality.
Xiang and Gong [11] propose natural grouping on behavior
patterns through an unsupervised model, which selects eigen-
vector features from a normalized affinity matrix. Zhao et

al. [12] propose a fully unsupervised dynamic sparse coding
approach for detecting unusual events in videos. Most of the
unsupervised methods utilize the ”hard to describe” but ”easy
to verify” property of unusual events, without building an
explicit model for normal events. Its advantage is that one
can compare each event with all the other observed events and
thus determine whether a given event is abnormal. However,
they still have the same problems, namely, how to improve the
accuracy and how to efficiently measure the similarity of the
detected events, especially on a relatively large dataset that is
required by most unsupervised methods.

III. REPRESENTATION OF ATOMIC MOTION PATTERNS

USING GMM

Due to the relatively large number of individuals in a
crowded scene, segmentation according to the contours of
pedestrians in the scene is not always reliable as discussed.
Averagely dividing the spatio-temporal volume into atomic
spatio-temporal blocks with a fixed size is popular to model
motions in a local spatio-temporal block. However, it is still
difficult to avoid the discordance of motions within the same
block. Namely, even for the same block, it potentially con-
tains discordance of motions which are generally brought by
different body parts of the same pedestrian, or the body parts
from different pedestrians that are unexpectedly divided into
the same block. As a result, using a uniform representation
to characterize such a single spatio-temporal block in general
faces difficulties in characterizing multiple motions inside the
same block, especially considering the mutual interferences
of body parts from the same pedestrian or several different
neighboring pedestrians.

In order to better characterize each spatio-temporal volume
block, we define the motion pattern within each block as a
collection of motions from multiple body parts. For this pur-
pose, we first extract optical flow vectors and then employ the
Gaussian Mixture Model over the optical flow vectors in each
block. As a result, every motion component within a spatio-
temporal block can be captured and the interference between
each other are accordingly avoided since the distribution of
optical flows located in that block can be modeled by GMM.
The Gaussian Mixture models of all the optical flows within
the same block are accordingly named as its motion patterns.
In this way, we obtain the atomic motion representation for
every block in the whole spatio-temporal volume.

Specifically, we first divide the volume into spatio-temporal
blocks of a fixed size as in [13]. We set the size of each block
to the average width of pedestrians. For every feature point
(x, y) in an input video frame, the optical flow v is computed
using the pyramidal Lucas-Kanade algorithm:

v = (vx, vy) (1)

where vx and vy are the velocities along the x and y directions,
respectively. The flow vectors that have a too large magnitude
are considered as noises and thereby discarded directly. Fol-
lowing the described spatio-temporal volume representation,
all the optical flow vectors are then assigned into spatio-
temporal blocks according to their spatio-temporal locations.

Then for a block at position (i, j) and time moment t,
we calculate the Gaussian Mixture Model Gt

ij(x
t
ij |θtij) for the
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block by:

Gt
ij(x

t
ij |μt

ij , θ
t
ij) =

kt
ij∑

k=1

ωkgk(x
t
ij |μt

ij ,Σ
t
ij) (2)

where xt
ij is a 2-dimensional optical flow vector in the block,

ωk (k = 1, ..., kij)
t denotes a corresponding mixture weight,

and g(xt
ij |μt

ij ,Σ
t
ij), k = 1, ..., ktij are the component Gaussian

densities.

There are altogether ktij components in Gt
ij , each denoting

the motion of a particular body part from the same pedestrian
or several different pedestrians. To determine the value of
ktij , we apply a mean shift clustering algorithm over the
optical flows which are assigned to the block at (i, j), and
accordingly use the number of the result clusters to initialize
ktij . Then, given the training optical flow vectors in any spatio-
temporal block, we model the motion pattern for it by GMM,
namely, the parameter of θ which best matches the distribution
of the training optical flow vectors. We use the Maximum
Likelihood (ML) algorithm to estimate the parameter. Since
the likelihood P (x|θ) is a non-linear function for the parameter
θ and a direct maximization will be difficult to calculate, we
use the Expectation-maximization (EM) algorithm to find the
maximum likelihood solution. Suppose the model parameters
of ω, μ and Σ are denoted by θ:

P (x|θ) = P (x|ω, μ,Σ) =
N∏

n=1

kt
ij∑

k=1

ωkN (xn|μk,Σk) (3)

The clustering centers and the number of clusters ktij described
above are passed to the training process of GMM as the input
for initialization. On each EM iteration (M-step), the following
re-estimation formulas are used, which guarantee a monotonic
increase of the likelihood value in the model:

μk =
1

Nk

N∑

n=1

γ(znk)xn (4)

Σk =
1

Nk

N∑

n=1

γ(znk)(xn − μk)(xn − μk)
T (5)

ωk =
Nk

N
(6)

where

Nk =

N∑

n=1

γ(znk) (7)

γ(znk) =
ωkN (xn|μk,Σk)∑K
j=1ωjN (xn|μj ,Σj)

(8)

μk,Σk and ωk are mean, covariances and mixing coefficients
(of ...), respectively. xn is an optical flow vector belonging to
the spatio-temporal block. In this way, we obtain the model
parameters θ if the convergence criterion is satisfied.

We further name the cluster of the motion patterns inside
the same block as a motion prototype, which is considered
as an usual event prototype in the block. Since the mean of

Fig. 1. The spherical polar coordinate space for labeling motion vectors,
where the optical flow in the colorful region is assigned a label li.

a set of GMMs do not always remain a GMM and directly
computing the mean of GMMs will be infeasible, we define
the medoid M ijk

s of a motion prototype by

M ijk
s = arg min

GMMijk
k

∑

m �=k

KL(GMM ijk
k ||GMM ijk

m ) (9)

where GMM ijk
k is the motion pattern that is associated with

the prototype M ijk
s at position (i, j, k). Since each prototype

essentially represents a certain type of steady motion activities
which appear in a specific local region inside the scene, we
treat it as the usual motion pattern at that position. Then we
determine whether a given motion pattern is usual or unusual
by measuring its deviations from the calculated prototypes
through the following confidence:

Cbasic = max
s

(p(Gijk
t |P ijk

s )) (10)

IV. CONTEXT MODELING FOR CROWDED SCENES

Our next purpose is to improve the accuracy of crowded
anomaly detection by characterizing the context of motion
patterns. Inspired by the work of Galleguillos et. al [14]
for object categorization, we use the MRF model to learn
the joint label distributions of adjacent local motion patterns
as the context of a crowded scene. Each component Ci in
GMM is actually a kind of composition of local motion
pattern representation and is defined by a Gaussian distribution
together with a weighted value ωi. Thus we can assign a
discrete motion label by transforming the mean vector of Ci

from the original video spatio-temporal coordinate space to the
planar polar coordinate space, which is divided into a set of
discrete radius and radian intervals with a fixed size as shown
in Fig. 1. Namely, each cluster is assigned with a label of a
specific bin in which the centroid vector falls in. To decide the
proper size for the intervals, we choose the maximum speed
value Rs of pedestrians in the scene s, and correspondingly
divide the planar polar coordinate space (r, θ), r ∈ (0, Rs),
θ ∈ (0, 360) into fixed radius and angle intervals.

For a specific motion pattern that is composed of ktij
components, we obtain a discrete distribution of labels as
shown in Table I.

Next, to describe the spatio-temporal context of mo-
tion patterns, we define a set of relation matrices
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TABLE I. THE LABEL DISTRIBUTION OF A MOTION PATTERN.
li(1 ≤ i ≤ ktij) IS THE LABELS FOR CLUSTERS OF THE MOTION PATTERN,

pi(1 ≤ i ≤ ktij) IS THE CORRESPONDING PROBABILITY, AND ktij IS THE

TOTAL NUMBER RELATED TO THE MOTION PATTERN (GMM).

l1 l2 l3 ... lkt
ij

p1 p2 p3 ... pkt
ij

Φmn
x ,Φmn

y ,Φmn
z ,Φmn

t , each capturing the interactions be-
tween the label distributions from adjacent blocks along one
of the 4 directions. Taking the x direction as an example,
each entry (i, j) in the matrix Φmn

x actually represents the
virtual times of the motion pattern having the label of li, which
appears in the training volume together with another motion
pattern having the label of lj . The term virtual here is a float
value rather an integer one to calculate co-occurrence times. To
simplify the computation of virtual times between two adjacent
motion patterns, we assume that their label distributions are
independent. Thus, the joint distribution of labels of any
two adjacent motion patterns can be calculated as shown in
Table II:

TABLE II. THE JOINT LABEL DISTRIBUTION OF TWO ADJACENT

MOTION PATTERNS m AND n. pmi IS THE PROBABILITY OF LABEL li IN THE

LABEL DISTRIBUTION Lm , AND ktijm
IS THE TOTAL NUMBER OF LABELS

WITHIN THE MOTION PATTERN m.

pm
1 pn

1 pm
1 pn

2 . . . pm
1 pn

kt
ijn

pm
2 pn

1 pm
2 pn

2 . . . pm
2 pn

kt
ijn

. . . . . . . . . . . .
pm
|Lm|p

n
1 pm

kt
ijm

pn
2 . . . pm

kt
ijm

pn
kt
ijn

|

After obtaining the probabilities which are extracted from
each specific volume, we can empirically count the virtual co-
occurrence times between any two adjacent motion patterns.
Basically, for one label pair (li, lj), supposing the probability
of li in the label distribution L1 is p1(li) and the probability
of lj in the label distribution L2 is p2(lj), we add p1(li)p

2(lj)
to the entry (i, j) in the relation matrix, which corresponds to
the two adjacent motion patterns. Therefore, the entry (i, j) in
matrix Φmn

x can be calculated as following:

Φmn
x (i, j) =

|D|∑

k=1

pmk (li)p
n
k (lj) (11)

where |D| is the total number of the volumes obtained from
the training image sequence, pmk (li) stands for the probability
of label li in the discrete label distribution corresponding to
the block m of the kth training volume. Similarly, we can
obtain the relation matrix Φmn

y (i, j), Φmn
z (i, j) for the y and

z direction, respectively.

With the MRF model, the probability of a spatially or
temporally adjacent label pair can be defined as follows:

p(< li, lj >;φmn
α ) =

1

Z(φmn
α )

exp(φmn
α (i, j)) (12)

where Z(.) is the partition function, φmn
α (i, j) is the interaction

potentials which are learned from the training data, α stands
for the category of relation that is one of x, y, z or t, m and n
denote the spatial positions of two motion patterns where li and
lj are extracted. Using the joint probability as the weight, we

compute the consistent probability of the two adjacent motion
patterns in a weighted sum form as follows:

p( < Mm,Mn >;φmn
α ) =

|LMm |∑

i=1

|LMm |∑

j=1

pMm(li)p
Mn(lj)p(< li, lj >;φmn

α )
(13)

where Mm and Mn are two motion patterns located at spatial
position m and n, respectively. pMm(.) and pMn(.) are the
discrete distributions corresponding to the motion pattern pair,
φmn
α is the parameter matrix of the interaction potential learned

from the training data.

Thus, given an input labeled dataset D, the likelihood
function for relation Rmn is calculated by

p(D;φmn
α ) =

1

Z(φmn
α )

|D|

|L|∑

i=1

|L|∑

j=1

Φmn
α (i, j)φmn

α (i, j) (14)

where Φmn
α (m,n) is the entry (i, j) of the frequency matrix

for spatial relation Rmn learned from the training data set
D, which counts the virtual times that the label pair (li, lj)
appears in a training lattices at the spatial position m and n,
respectively. |D| is the total number of the volumes in the
training set D.

With the spatio-temporal context modeling that captures the
co-occurrence relations among adjacent motion patterns, we
define a measurement that indicates the consistency between a
specific motion pattern and its spatial and temporal neighbors:

Ccontext(Mm) = min
β∈neighbors

p(< Mm,Mβ >) (15)

where β is the adjacent spatio-temporal position, which has
one of six relations relative to the current position m - spatial
up, spatial down, spatial left, spatial right, spatial before,
spatial after, temporal before or temporal after.

V. ANOMALY DETECTION

With the given discussions, we can now integrate the
static and the contextual measurements for detecting anomaly
motions in a crowded scene. Using the spatio-temporal context
learned from training data, we evaluate the confidence measure
for each usual motion pattern, simultaneously taking into
account the confidence Cbasic that indicates the consistency
with the particular prototype, and the confidence Ccontext

that denotes the consistency of the spatio-temporal relations
with the neighbors in the scene. Specially, we use a weighted
combination of the two factors as follows:

Ctotal = βCbasic + (1− β)Ccontext (16)

In this way, we finally use the summarized confidence
Ctotal to detect anomaly events from an input image sequences
of a crowded scene. When the total confidence is lower than
a specific threshold, we consider the motion as an anomaly
event.
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TABLE III. PERFORMANCE COMPARISONS OF THE PROPOSED METHOD BY BOTH GMM AND MRF, GMM ONLY, AND THE STCOG APPROACH [16], IN

WHICH TP AND FP DENOTE THE TRUE POSITIVE AND THE FALSE POSITIVE, RESPECTIVELY).

Crowded Scene Categories
GMM with MRF GMM only STCOG [16]

True Pos False Pos True Pos False Pos True Pos False Pos

Outdoor Building Gate 0.81% 0.19% 0.78% 0.22% 0.78% 0.22%

Indoor Classroom 0.80% 0.19% 0.72% 0.27% 0.72% 0.27%

Outdoor Street 0.68% 0.31% 0.59% 0.42% 0.58% 0.43%
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Fig. 2. Outdoor abnormal detection (Building Gate): (a) the ROC curves of
the proposed method by both GMM and MRF, GMM only, and the STCOG
approach, (b) and (c) the detected abnormal events of walking along a different
direction.

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

We evaluate the performance of our anomaly detection on
the dataset [15], which consists of over 25000 images with the
resolution of 1024× 768 pixels. The dataset contains samples
of three crowded environments: two outdoor scenes, namely,
a (i) Building Gate scene, a (ii) Street scene, and an indoor
Classroom scene. Each scene category contains several abnor-
mal cases such as stopping, turning around, suddenly changing
speed and going backwards. For each abnormal event, we
averagely collect 250 images for testing, while leaving about
1500 images for training. To evaluate the effectiveness of our
anomaly detection method, all the query sequences are hand-
labeled and used as the ground truth. Note that [15] presented
a model for abnormal detection from depth videos, in which
context modeling is not considered.
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Fig. 3. Outdoor abnormal detection (Street): (a) the ROC curves of the
proposed method by both GMM and MRF, GMM only, and STCOG, (b) the
detected abnormal event of suddenly stopping, and (c) the detected abnormal
event of changing direction.

Table III shows the comparison results of three different
approaches on the same dataset: the proposed algorithm with
both GMM and MRF modeling, the proposed algorithm with
GMM only, and another approach STCOG [16]. STCOG is
also a block-level algorithm for detecting abnormal events, in
which GMM is built on every two neighboring blocks. It can
be found that the performance of the proposed algorithm with
GMM only is very similar to those of STCOG. However, after
context modeling using MRF, the average true positive rate of
our method is increased while the average false positive rate
is decreased simultaneously.

Fig. 2 shows the ROC curves of the three methods and
several detected abnormal event examples from an outdoor
scene of Building Gate. The ROC curves in Fig. 2(a) illustrates
the effectiveness of anomaly detecting by combining GMM
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and MRF modeling in such a crowded scene. Fig. 2(b) and
Fig. 2(c) show two detected cases of the abnormal event
walking along a different direction, respectively.

Fig. 3(a) further shows the ROC curves of the three meth-
ods in another outdoor Street scene. Similarly, Fig. 3(b) and
Fig. 3(b) give two examples of the detected anomaly motions.
The rest abnormal events, such as unexpected turning back,
sudden speed changes, and walking along wrong directions
can all be successfully detected. Note that the ROC curves of
the Street scene in Fig. 3(a) are lower than those in Fig. 2(a). It
is due to the fact that the motions in a Street scene is in general
much more complex than the latter. For instance, pedestrians
and vehicles such as cars and bicycles may simultaneously
exist in the same scene, making it difficult to clearly define the
steady motion patterns. Moreover, pedestrians become smaller
in such a street scene, which potentially makes the detection
of their anomaly motions easily being disturbed.

Fig. 4 gives the comparisons using the image sequences
from an indoor Classroom scene. For such an indoor scene, we
define the motions of entering the classroom as usual events.
Generally, the accurate calculation of optical flows plays an
important role in our GMM and MRF integrated anomaly
detection. We find there may exist errors during calculating
optical flows in an indoor scene, potentially brought by the
low-quality of illumination or the easy confusion of scene
objects and the scene background. Fig. 4(b) shows the correctly
detected anomaly motions together with a false positive which
is caused by inaccurate optical flow estimation.
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Fig. 4. Indoor scene detection: (a) the ROC curves of the Classroom scene
the proposed method by both GMM and MRF, GMM only, and STCOG, and
(b) the detected abnormal motion in the indoor Classroom scene.

VII. CONCLUSION

A novel statistical framework for modeling the intrinsic
structure of crowded scenes and detecting abnormal activities
is presented in this paper. We propose an atomic motion pattern

representation using the Gaussian Mixture Model to distin-
guish the motions inside each block in a refined way. Usual
motion patterns can thus be defined as a certain type of steady
motion activities appearing at specific scene positions. We
further use the Markov Random Field model to characterize
the joint label distributions over all the adjacent local motion
patterns inside the same crowded scene, aiming at modeling
the severely occluded situations in crowded scene accurately.
By combining the determinations from the two stages, we
propose a weighted scheme to automatically detect anomaly
events from crowded scenes. The experimental results on
several different outdoor and indoor crowded scenes illustrate
the effectiveness of the proposed algorithm. In the future, we
will focus on incorporating stronger scene context information
to further improve the performance, and improve the robust
calculation of optical flows.
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