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Abstract—Micro-expressions (MEs) are involuntary and subtle
facial expressions that are thought to reveal feelings people
are trying to hide. ME spotting detects the temporal intervals
containing MEs in videos. Detecting such quick and subtle
motions from long videos is difficult. Recent works leverage
detailed facial motion representations, such as the optical flow,
and deep learning models, leading to high computational com-
plexity. To reduce computational complexity and achieve real-
time operation, we propose RMES, a real-time ME spotting
framework. We represent motion using phase computed by Riesz
Pyramid, and feed this motion representation into a three-
stream shallow CNN, which predicts the likelihood of each
frame belonging to an ME. In comparison to optical flow, phase
provides more localized motion estimates, which are essential for
ME spotting, resulting in higher performance. Using phase also
reduces the required computation of the ME spotting pipeline
by 77.8%. Despite its relative simplicity and low computational
complexity, our framework achieves state-of-the-art performance
on two public datasets: CAS(ME)2 and SAMM Long Videos.

Index Terms—Facial expression recognition, emotion detection,
image pyramid, CNN

I. INTRODUCTION

Macro-expressions are the commonly encountered facial

expressions like happiness, sadness, surprise or anger. They

typically last from 1/2 to 4 seconds and are often generated

consciously or voluntarily. Micro-expressions (ME) are much

shorter in time (typically 1/25 to 1/2 second) and smaller in

magnitude [1]. They are thought to be largely involuntary,

making them difficult to hide, even when people seek to

suppress them. They are essential non-verbal communication

clues, providing insight into the genuine emotional state of

individuals. They have been widely to various fields such as

public safety, recruitment, medicine, and neuropsychology [2].

ME spotting is an important first step in automated facial

expression recognition (AFER) [3]. An ME has three distinct

stages: onset, apex, and offset. The onset occurs when the

facial muscles start to contract. The apex is the facial action’s

point of peak intensity. The offset marks the moment when

muscles return to their neutral state. ME spotting aims to detect

onset and offset of all MEs in a video sequence.

Because MEs are composed of quick and subtle motions

with low spatial amplitude, the best-performing ME spotting
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algorithms usually extract image motion as optical flow at the

front end, followed by deep neural network models performing

detection at the back end. However, the high computational

complexity of optical flow makes them difficult to run in

real time, especially in resource-constrained environments,

such as remote monitoring for public safety. Thus, researchers

seek to reduce computational complexity while maintaining

high accuracy. Liong et al. [4] proposed to reduce back end

complexity with a three-stream shallow Convolutional neural

network (CNN), while using optical flow as the front end.

Other work has focused on the front end, using phase as an

alternative to the optical flow. Phase is often used as a pre-

processing step for more complex image motion algorithms,

such as motion magnification and optical flow estimation. It

provides local motion estimates, which more complex optical

flow algorithms refine by integrating information across space,

e.g. using smoothness constraints, to address issues like the

aperture problem.

In this paper, we propose the RMES (Real-time Micro-

Expression Spotting) framework, which reduces computational

complexity at both ends, combining phase features extracted

by a Riesz Pyramid in the front end with a lightweight three-

stream shallow CNN in the back end. Our approach uses a

shallow CNN structure similar to that of Liong et al. [4],

but with phase instead of optical flow to represent motion

information.

To the best of our knowledge, this paper describes the first

comparison of phase versus optical flow for a ME-related task.

With the changes to the network mentioned above and detailed

below, using phase instead of optical flow improves the F1

score by 26.94%, as we demonstrate in Sec. VII. Although

optical flow reduces noise and solves the aperture problem,

it also removes the small variations in local motion that are

critical to detecting MEs. However, to use phase effectively, an

additional facial alignment step is critical. It is also important

to choose the scale from the Riesz pyramid correctly, as there

is a trade-off between motion sensitivity and motion range, as

we describe in Sec. IV.

As an added benefit, phase reduces inference time by 77.8%

compared to optical flow. Despite its simplicity and low

computational complexity, our method achieves the state-of-

the-art F1 scores on both the CAS(ME)2 and SAMM Long

Video datasets.
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II. RELATED WORK

Image motion information is critical for ME spotting, re-

quiring integration of information over both time and space.

Some approaches extract spatial features first, then integrate

them over time. For example, Yang et al. [5] present a

deep learning framework based on facial action units (AU)

detection in each frame, followed by the combination of AU

information across time. Other approaches integrate across

both dimensions simultaneously. For example, Yap et al. [6]

propose an end-to-end 3D-CNN framework that learns features

directly from appearance.

Most recent works in ME spotting use explicit representa-

tions of image motion, such as optical flow. This is then fed

into a classifier, such as a deep CNN model [7]–[10]. This

combination achieves the state-of-the-art results in expression

spotting. However, it is time-consuming, as optical flow ex-

traction and deep CNNs are both computationally complex.

Liong et al. [4] addressed this partially with a shallow three-

stream CNN model to predict the likelihood score for both

macro- and micro-expressions from optical flow. This reduced

the time complexity of the neural network, but not the time

complexity of optical flow.

Optical flow is the most common representation for motion

information. A notable exception is Duque et al.’s work [3]

[11], which we discuss in more detail below. Although optical

flow is intuitively appealing and widely used, we argue that it

is not the best motion representation for ME spotting. Optical

flow algorithms usually integrate information over large spatial

regions, under the assumption that the flow is smooth, i.e.,

values at neighbouring pixels are close to each other. This is

a good assumption for rigid objects, and helps to address the

aperture problem, which arises because local measurements

can only estimate displacements orthogonal to the dominant

texture orientation. However, it is a poor assumption for the

face, which is non-rigid, and for MEs, which are spatially

localized.

Given the small image displacements in MEs, some work

has used motion magnification as a preprocessing step to

amplify them. For example, Kumar et al. [12] first amplified

motion using Eulerian Motion Magnification (EMM), then

computed optical flow and input it to a graph attention

network. However, this approach is wasteful, as motion in-

formation is extracted twice: first by the EMM algorithm to

magnify the motion and second by the optical flow algorithm

to measure it.

We argue that it is more efficient to use the motion in-

formation extracted during motion magnification directly. The

most effective algorithms for motion magnification represent

motion information using phase, which we describe in more

detail in the next section. For example, Wadhwa et al.’s real-

time phase-based motion magnification algorithm computes

phase using the Riesz Pyramid [13]. Our proposed RMES

algorithm uses the same representation. While phase is noisier

than optical flow due to limited spatial integration, it provides

more localized information, which can capture the non-rigid

Fig. 1. Two representations of a 2-level Riesz Pyramid: Cartesian coordinates
(i.e., monogenic signal) and spherical coordinates.

motion of the face during MEs.

Our approach differs from previous work using phase for

facial emotion analysis. Deng et al.’s MiMaMo net for macro-

expression emotion recognition used phase computed by a

Complex Steerable Pyramid in the frequency domain [14].

We use the Riesz Pyramid, which is computed entirely in the

spatial domain, making it easier to avoid artifacts due to phase

wrap-around. It is also approximately four times faster. Duque

et al. used the phase variance, a simple hand-crafted feature

computed from Riesz Pyramid phase for ME spotting [3] and

classification [11]. They spatially averaged the phase over

three pre-defined facial regions (the two eyes and the mouth) to

estimate the net motion in each region, then looked for peaks

in the squared difference between the instantaneous phase and

the mean phase over the entire video. This approach ignores

spatially localized motion, e.g. in different parts of the eye

or mouth, that is critical to ME spotting. It also ignores tem-

porally localized motion, looking only at absolute changes in

position versus the mean. In contrast, our approach preserves

spatially and temporally localized motion information about

motion. Rather than averaging, we maintain phase estimates at

each pixel. Rather than measuring instantaneous versus global

mean phase, we look at inter-frame phase differences.

III. PHASE DIFFERENCES FROM THE RIESZ PYRAMID

Fig. 1 illustrates a two-level Riesz Pyramid constructed from

an input face image.

We first build a Laplacian pyramid for each image in

the input video. Images at coarser levels are obtained from

previous levels by Gaussian blurring and downsampling. We

then calculate differences between the images at subsequent

levels (subbands).

Next, we take the approximate Riesz transform of each

subband in the Laplacian pyramid. The Riesz transform is a

steerable Hilbert transformer. We compute a quadrature pair

of filters that are 90 degrees out of phase with respect to each

other along the dominant orientation at every pixel [13]. The

filters have transfer functions: −i ωx

‖�ω‖ and − i
ωy

‖�ω‖ .

Applying this filter pair to the image at frame m, Im, we

obtain a pair of filter responses, (R1m, R2m). The input I and

the filter responses form a triple called the monogenic signal
(Im, R1m, R2m), which we combine into a quaternion rm,
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Fig. 2. The Real-time Micro-Expression Spotting (RMES) framework.

which can also be expressed in terms of the local amplitude

Am, local orientation θm and local phase φm:

rm = Im + iR1m + jR2m (1)

= Am cosφm + iAm sinφm cos θm

+ jAm sinφm sin θm (2)

The solution of Eq. 2 is not unique, since both

(Am, φm, θm) and (Am,−φm, θm + π) map to the same

monogenic signal. Therefore, we use the quaternionic phase
(φm cos θm, φm sin θm), which is invariant to the ambiguity

between (φm, θm) and (−φm, θm + π).

Following [15] and [16], we compute a sequence of quater-

nionic phase differences between adjacent frames from the

sequence of unit quaternions r̂m = rm/‖rm‖ according to

log(r̂mr̂−1
m−1) ≈ iΔφm cos θm + jΔφm sin θm (3)

where the phase difference Δφm = φm−φm−1 is a measure of

the inter-frame motion in the direction of the local orientation

θm, which is measured with respect to the horizontal image

axis. The approximation holds if the local orientation is

roughly constant in time.

IV. RMES FRAMEWORK

Fig. 2 shows the structure of our proposed RMES frame-

work. Inspired by [4], the structure consists of three stages:

preprocessing, shallow CNN, and postprocessing.

In the preprocessing step, we apply face alignment and the

Riesz Pyramid to obtain a sequence of quaternionic phase

differences as described in the previous section.

We then accumulate these phase differences over K frames

to measure the motion between images spaced K frames apart.

We choose K to be half the average length of the MEs in the

dataset. If the apex typically occurs about halfway between

the onset and offset, then K is the average number of frames

from onset to apex and from apex to offset. Intuitively, the

magnitude of facial movement should be largest for these

intervals.

In the shallow CNN stage, we crop signals from Regions of

Interest (RoI) relevant to MEs and input them into the shallow

CNN, which outputs a score representing the likelihood the

frame belongs to an ME. This results in a sequence of (T−K)
scores, where T is the video length.

In postprocessing, we smooth the (T−K) output scores and

detect peaks above the predefined threshold as apex frames,

{an}Nn=1, where N is the number of detected peaks. The final

spotted intervals are {[an −K, an +K]}Nn=1.

We describe these steps in more detail below.

Face alignment. Face alignment is an essential preprocess-

ing step to compensate for head motion. Prior approaches

accounted for head motion by subtracting the average motion

across the image or a region, such as the noise. While this

can compensate for translation, it cannot compensate for other

effects, such as tilt and rotation. Given the sensitivity of phase,

our experimental results suggest that accurate face alignment

is critical to ensuring that the Riesz Pyramid extracts motion

relevant to ME. We do face alignment using the OpenFace

Toolkit [17], which detects 68 facial landmarks and uses them

to align the face by linear warping followed by cropping of the

face region. We resize cropped and aligned images to 224×224
pixel resolution.

Riesz Pyramid. We temporally filter the sequence of quater-

nionic phase differences in Eq. 3 to isolate motions of interest

and remove noise. Since we seek to detect subtle motions,

we use a non-causal finite impulse response (FIR) filter with

no group delay. Unlike EMM, which focuses on amplifying

periodic motions, ME motions are non-periodic. Rather than

using the temporal bandpass filter in EMM, which can result

in large oscillations near the onset and offset of the ME due to

the Gibbs phenomenon, we use a lowpass filter, which filters

out high frequency noise.

We accumulate the filtered phase difference sequence to

measure the motion between frames spaced K frames apart.

If, with a slight abuse of notation, we use iΔφm cos θm +
jΔφm sin θm to denote the filtered sequence, the accumulated

sequence is given by iΔΦm cosΘm + jΔΦm sinΘm where

ΔΦm cosΘm =
K−1∑
k=0

Δφm−k cos θm−k (4)

ΔΦm sinΘm =
K−1∑
k=0

Δφm−k sin θm−k (5)

We also compute the phase difference magnitude

|ΔΦm| =
√

(ΔΦm sinΘm)
2
+ (ΔΦm cosΘm)

2
. (6)

The accumulation of the quaternionic phase differences in

Eqs. 4 and 5 avoids phase overlap that might be encountered

due to the relatively large displacements over K frames, but

still assumes that the phase difference between successive

frames is always in the interval (−π, π] [16]. This assumption

is often valid for ME spotting, since small motions result
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in small phase differences. However, the size of the phase

shift also depends upon the dominant spatial frequency, which

varies with the level of the Laplacian pyramid. For the same

motion, larger spatial frequencies (finer scales) result in the

larger phase shifts. This increases sensitivity, but also increases

the chance of phase wrap-around. Thus, the choice of pyramid

level is a trade-off between sensitivity and motion range.

RoI cropping. We further crop the images based on the

Regions of Interest (RoIs) where MEs might occur according

to Facial Action Coding System (FACS), i.e., the eyebrows

and the mouth as illustrated in Fig. 3 [18]. We then resample

each region to 15 × 30 pixels and stack them, resulting in

an input feature map with 30 × 30 pixels and three channels

(ΔΦm cosΘm, ΔΦm sinΘm and |ΔΦm|). We normalize the

feature maps using the Z score.

Shallow CNN. The shallow CNN has three streams: one

for each channel. Each stream consists of a CNN layer (filter

size 3 × 3 and stride size 1 × 1), followed by max pooling

layer (kernel size 6× 6 and stride size 6× 6). Following [4],

the number of filters varies according to stream depending

upon the importance of the features (3, 5, and 8 filters,

respectively). For example, ΔΦm cosΘm and ΔΦm sinΘm

measure horizontal and vertical displacements, respectively.

Since MEs typically involve more vertical than horizontal

movements, we allocate more filters to the ΔΦsinΘm stream.

We concatenate and flatten the feature maps, resulting in a

5 × 5 × 16 = 400 dimensional feature vector. This is fed

into two fully connected layers, the first one (400, 400) to

summarize the features, and the second one (400, 1) to output

the final score s, which indicates the likelihood that the frame

is part of an ME interval.

We assign binary ground truth scores Si to each frame

i according to the Intersection Over Union (IoU) between

the interval between two frames used to compute the phase

difference at frame i and the nearest ME interval in the ground

truth, i.e., Si = 1 if IoU ≥ 0.5, else Si = 0.

We train the model with a Mean Square Error (MSE) loss

function: L = 1
N

∑N
i=1 (si − Si)

2
, where N is the total

number of image pairs in the dataset.

Postprocessing. For each video, we smooth the scores by

averaging across the 2K + 1 frames:

ŝi =
1

2K + 1

i+K∑
j=i−K

sj , for i = K + 1, . . . , T −K, (7)

Then, we perform peak detection to find local maxima ex-

ceeding a predefined threshold H and such that the horizontal

distance between adjacent peaks is no less than k. We set

H = ŝmean + h× (ŝmax − ŝmean ) , (8)

where ŝmean and ŝmax are the mean and maximum scores over

the entire video. h ∈ [0, 1] is a hyperparameter controlling the

threshold. For each detected peak, we obtain a spotted interval

[P −K,P +K], where P is the peak location.

TABLE I
SUMMARY OF DATASET PROPERTIES

#Vid. #Sub. #Samp. FPS Resolution

CAS(ME)2 98 22 57 30 640× 480
SAMMLV 147 32 159 200 2040× 1088

V. METHODOLOGY

Datasets. We evaluated our model on two public datasets:

CAS(ME)2 [19] and SAMM Long Videos [20]–[22]. Table I

summarizes the properties of these datasets.

Metrics. We compare model performance using the F1

score proposed in [23]. Let Xi be the ground truth number

of micro-expressions in video i, Yi be the number of spotted

intervals, and ai be the number of true positives. A spotted

interval is considered to be a true positive if its IoU with a

ground truth interval exceeds 0.5. The F1 score is defined as

F1 =
2PR

P +R

where the precision P and recall R are given by

R =

∑V
i=1 ai∑V
i=1 Xi

and P =

∑V
i=1 ai∑V
i=1 Yi

Implementation We implemented our framework using

PyTorch 1.11.0, and trained on an NVIDIA A40-16Q GPU.

We apply Leave-one-subject-out (LOSO) cross-validation in

order to ensure all samples are evaluated. We used the third

level of the Riesz Pyramid. The cutoff frequency of the

lowpass filter was 10Hz, corresponding to a time constant of

100ms. The value of K was 6 and 47 for CAS(ME)2 and

SAMM Long Videos, respectively, half the average length of

MEs in the two datasets (200ms and 235ms). The value of

h used for peak detection was 0.7. For our experiments with

optical flow, we used the Python library OpenCV 4.5.2 running

on the same device as phase calculation.

VI. EXPERIMENTAL RESULTS

Table II compares the F1 scores of our RMES framework

with other SOTA systems. Duque et al. [3] perform peak

detection on phase variance computed from the Riesz Pyramid.

Yang et al. [5] and Yap et al. [6] use end-to-end deep learning

frameworks with appearance-based representation. The others

[4][7]-[10] cascade an optical flow front-end with a CNN-

based back-end.

Our RMES framework outperforms all other SOTA systems

listed. To see the effect of phase versus optical flow, we

compare our results with those of Liong et al. [4], who use an

optical flow front end followed by a shallow CNN similar to

that used in our model. Our model with phase improves the F1

score by 26.94% and 9.67% for CAS(ME)2 and SAMM Long

Videos. This supports our claim that phase features are better

representations of facial motions for ME spotting than optical

flow. The F1 scores listed do not tend to increase over time

because most systems, except [10], focused on optimizing an
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TABLE II
F1 SCORES OF BENCHMARKS AND OUR MODEL

Methods CAS(ME)2 SAMM LV
Duque et al., 2018 [3] 0.0806 0.0711
Liong et al., 2021 [4] 0.1173 0.1520
Wang et al., 2021 [7] 0.0360 0.0880

Yu et al., 2021 [8] 0.0420 0.1310
Yang et al., 2021 [5] 0.0153 0.1155
Liong et al., 2022 [9] 0.0808 0.0878
Yap et al., 2022 [6] 0.0714 0.0466

Liong et al., 2023 [10] 0.1214 0.0949
Ours 0.1489 0.1667

TABLE III
TIME COMPLEXITY COMPARISON (UNIT: SECOND)

Methods Preprocessing Inference Overall
Liong et al., 2021 [4] 0.12 0.0020 0.122

Ours 0.0266 0.0019 0.0285

overall F1 score evaluating both macro- and micro-expression

spotting, rather than micro-expression spotting alone.

Table III compares the time complexity of Liong et al. [4]

and RMES. The inference time of these two methods only

takes 1.6% and 6.7% of the overall time. Thus, focusing on

improving the preprocessing step is vital to improving speed,

as it takes most of the time. Even including the extra face

alignment step, which accounts for the bulk (0.018 seconds

or 68%) of the preprocessing time, the preprocessing time of

RMES is only 22% of [4], corresponding to more than four

times speedup.

Table IV lists the number of parameters and FLOPs for

all models where that information was provided. Our model

requires the fewest FLOPs. Compared to Liong et al. [4], our

model also reduces the computational complexity at the CNN

back end, because we use smaller receptive fields (3 × 3 vs.

5× 5) and a smaller input dimension (30× 30 vs. 42× 42).

Fig. 3 compares the phase differences and optical flow

for an aligned image sequence pair where the subject raises

the right corner of her mouth. Due to the spatial integration

in optical flow, its vector field is smoother and cleaner, but

ignores the local details that phase preserves. For example, the

non-rigid deformation of the mouth is reflected in the varying

directions of the phase difference vectors, but the optical flow

vectors all point in the same direction (upwards). These subtle

changes in the face are vital for ME spotting and should not

be smoothed out. This example supports our intuition that

phase provides more robust and richer feature representation

for micro-expression.

VII. ABLATION STUDIES

We conducted ablation studies to show the effect of using

face alignment, taking input from different levels of the Reisz

pyramid, the choice of temporal filter in the pyramid, and

cropping RoIs.

Face alignment. Face alignment (FA) reduces the effect

of global translations, rotations and scaling, which are less

TABLE IV
MODEL SIZE AND LATENCY COMPARISON

Methods # Param # FLOPs
Liong et al., 2021 [4] 315k, 2.1M

Yu et al., 2021 [8] 23M 810M
Liong et al., 2022 [9] 67k 1.4M

Liong et al., 2023 [10] 161k 2.7M
Ours 161k 0.6M

Fig. 3. Comparison of phase differences and the optical flow. Red rectangles
show the RoI areas. (Left) An aligned image sequence pair. (Middle) Quiver
plot of phase differences overlaid upon a red-green anaglyph of the image
pair. (Right) Similar plot for optical flow.

relevant in ME spotting. Table V compares the effect of

using/not using FA for both datasets. Using FA significantly

reduces false positive detections, improving precision and

therefore the F1 score by 21.7% and 42.7% on CAS(ME)2

and SAMMLV, respectively. Without face alignment, global

motion can introduce large phase differences, which the model

classifies mistakenly as a ME.

Riesz Pyramid Level. Different levels in the Riesz Pyramid

correspond to different frequency ranges or scales. Earlier

levels correspond to finer scales and higher resolution. They

contain more detailed information, but cannot represent large

displacements, tend to be noisier and are more prone to phase

wrap-around. The left plot in Fig. 4 shows the F1 score

when using phase from different levels as input. The F1 score

initially increases as we move up the pyramid, as displacement

range increases and the noise decreases, but degrades after the

third level due to the low resolution (13× 13) at level 4.

Temporal Filter. The middle plot in Fig. 4 compares the

effect of filtering the unwrapped phase differences with a

lowpass filter with 10Hz cutoff frequency and a band-pass

TABLE V
THE EFFECT OF FACE ALIGNMENT (FA).

(TP = TRUE POSITIVE, FP = FALSE POSITIVE, FN = FALSE NEGATIVE)

FA
CAS(ME)2

TP FP FN Recall Precision F1
True 14 117 43 0.2456 0.1069 0.1489
False 14 158 43 0.2456 0.0814 0.1223

FA
SAMM Long Videos

TP FP FN Recall Precision F1
True 30 171 129 0.1887 0.1493 0.1667
False 31 341 128 0.195 0.0833 0.1168
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Fig. 4. Ablation studies on the effect of different pyramid levels, temporal
filters, and use of RoIs.

filter between 2Hz and 10Hz. Eliminating lower frequencies

degrades performance.

Region of Interest. We compare the F1 score when using

input only from eye and mouth RoIs and when using input

from the full image. The right plot in Fig. 4 shows that

restricting input to RoIs results in better F1 scores. We

designed the RoI based on Facial Action Coding System,

which is used to describe MEs. This focuses the network on

information relevant to MEs and avoids irrelevant information,

such as from the jawline and areas below it.

VIII. CONCLUSION

In this paper, we addressed the high time complexity of

ME spotting algorithms by proposing the Real-time Micro-

Expression Spotting (RMES) framework, which uses phase

extracted from Riesz Pyramid followed by a three-stream shal-

low CNN. In our evaluations on CAS(ME)2 and SAMM Long

Videos, RMES achieves the state-of-the-art performance with

significantly lower computational complexity. Our comparison

of phase differences and optical flow suggests that phase

differences are better suited for ME spotting, as it localized

motion details. Moving forward, possible extensions of this

work include replacing the peak detection postprocessing step

with frame by frame labels, which will enable the framework

to detect ME intervals with varying length. We also plan to

explore approaches other than Gaussian smoothing for denois-

ing, such as an attention mechanism that could dynamically

assign small weights to noisy regions.
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